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A molecular gyroscope which has a phenylene rotator
encased in three long siloxaalkane spokes was synthesized.
The phenylene ring is observed by X-ray crystallography at three
rotational positions around the 1,4-axis between 223–303K. The
area in which the phenylene ring is found is significantly reduced
at 173K owing to the deformation of a siloxaalkane spoke; the
temperature-dependent phenylene disorder is reversible.

As a class of molecular machines,1 much attention has been
focused on macrocyclic molecules with bridged phenylene
groups, because they are expected to demonstrate functions of
molecular gyroscopes and compasses, whose interior rotator
(phenylene) is protected by an exterior framework. The rotation
or orientation of a bridged phenylene group in these molecules
could be controlled by external electric and magnetic fields,
thermal stimulus, etc., as first proposed by Garcia-Garibay
et al.2 As a solid-state molecular gyroscope, they proposed a
triply bridged 1,4-bis[(tritylethynyl)-2,3-difluorobenzene (1 in
Chart 1). Whereas the synthesis of 1 has not yet been achieved,
the dynamic behavior in the solid state of related 1,4-bis[(3,3,3-
triarylpropynyl)benzenes 2a–2f and an ionic boron congener 2g
have been investigated by Garcia-Garibay et al.2 and Gardinier
et al.,3 respectively.4 Recently, Gladysz et al.5 have reported
the synthesis of molecular gyroscope-type compounds having
transition metal rotators 3a–3d. During the course of our studies
in this direction,6 we have achieved the synthesis and structural

characteristics of a novel molecular gyroscope having a phenyl-
ene rotator 4, which is encased in three long siloxaalkane spokes.

Compound 4 was synthesized as shown in Scheme 1.7

The isomers 4 and 8 were separated from each other by recycle
reversed phase HPLC and purified by recrystallization.7

NMR spectra of 4 in CDCl3 show highly symmetric (D3)
pattern between 173 and 300K, indicating that the phenylene
group of 4 rotates rapidly in solution in the temperature range.

The molecular structure of 4 and its packing diagram in a
single crystal are shown in Figure 1.8 All the phenylene 1,4-axes
are parallel in the single crystal of 4. In a molecule of 4, the
phenylene ring is observed at three positions A, B, and C with
the occupancy factors of 0.25, 0.50, and 0.25, respectively,
between 223 and 303K, as shown in Figure 2. At 173K, the
conformation of a siloxaalkane spoke of 4 largely deforms from
that found at 223K with slight reduction of the unit cell volume.
This deformation causes significant modification of the phenyl-
ene disorder due to the increase of steric contact between phen-
ylene and siloxaalkane chains in 4;9 the phenylene ring is
observed at D, E, and F positions with the occupancy factors
of 0.29, 0.42, and 0.29 at 173K (Figure 2b). The phase transition
was observed reversibly. No such disorder has been observed in
the crystals of 8 or other known gyroscope-type molecules.2,3

The area in which the phenylene ring is observed in the molecule
is significantly reduced at 173K compared with the area at
223K, suggesting that the phenylene ring rotates smoothly at
>223K but flips in a confined area at <173K.10 Using flexible
siloxaalkane side chains, phenylene rotation of molecular
gyroscopes is expected to be temperature-controlled.

In the 13CCP/MAS spectrum of 4, aromatic CH carbons
were observed as a sharp singlet between 173 and 323K. The
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aromatic CH carbon signal was intense even with a 100-ms dipo-
lar dephasing delay, while in a reference compound, 1,4-bis(tri-
methylsilyl)benzene, in the solid state, the corresponding 13C
signal disappeared rapidly by the dipolar dephasing at 298K,
indicating facile phenylene rotation of 4 in the solid state.11

Because the siloxaalkane spokes are not only robust and rel-
atively easily constructed but transparent for UV–vis light and
functionalized if necessary, optical control of the rotation may
be feasible by introducing polar substituents on the molecule.12
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Figure 1. (a) Molecular structure of compound 4 at 223K (30%
thermal probability ellipsoid). Hydrogen atoms are omitted for
clarity. (b) Crystal packing diagram of 4.

Figure 2. Temperature dependence of structural disorder in 4:
(a) 303K, (b) 173K. The ratio of accented and unaccented side
chains is 0.328(5):0.672(5).
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